

SN1 & SN2 REACTIONS

• SN1 & SN2 reactions are nothing but simply a type of Nucleophilic Substitution Reaction.

• A Nucleophilic substitution reaction is a type of organic reaction in which an atom or group of an atom is replaced from substrate by a nucleophile.

• The substitution can be occur either in one or two step.

- The two step mechanism is known as $5N^{1}$ Reactions while the one step mechanism is known as $5N^{2}$ Reactions.
- Nucleophilic substitution reactions mainly occurs in Alkyl Halides and Alcohols.

TYPES OF NUCLEOPHILIC SUBSTITUTION REACTION

They are of mainly two types

- 1 SN1 Reaction
- 2 SN2 Reaction

SNº REACTION

- · SN1 stands for Unimolecular Nucleophilic Substitution Reaction.
- It is a two step process.
- The reaction follows First order kinetics.
- The reaction takes place in the presence of weak base. Or weak nucleophile.
- Order of reactivity → 3° > 2° 71°

STEP - I

It is slow & rate determining step in which carbocation is formed.

CH₃

$$CH_3 - C - Br$$

$$CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_3 - CH_3$$

$$CH_3 - CH_3 - CH_3$$

STEP - I

Attack of Nucleophile on corbocation to give product.

SNº REACTION

- · SN2 stands for Bimolecular Nucleophilic Substitution Reaction.
- It is a one step process
- The reaction follows Second Order kinetics.
- · Formation of Transition state takes place.
- · Reactivity order 10720730

MECHANISM OF SN2 REACTION

In SN2 reaction the nucleophile attacks on carbon atom of Alkyl halide from backside which results in the formation of transition state & ultimately give product of opposite / inverted configuration to that of initial Alkyl halide.

SN1 REACTION	SN2 REACTION
 It is a unimolecular Reaction It follows 1st order kinetics It is a two step process Reactivity order: 3°72°71° 	 It is a bimolecular Reaction If follows second order kine. It is a one step process Reactivity order: 10720730

FACTORS AFFECTING SN1 & SN2

There are following various factors that affect SN1 & SN2 reactions :

- Nature Of Alkyl Halide: Reactivity order of Alkyl Halides for SN1 : 30 7 207 10
 - · Reactivity order of Alkyl Halides for SN2 : 10720730

Nature of Leaving Group: • More easily the leaving group removed from carbon atom faster will be substitution reaction.

R-I > R-By > R-CI > R-F

Nature of Solvent :

- Generally Polar Protic Solvents are used for SN1 reactions.
 - · Polar Aprofic solvents are used for SNº reactions.

QUALITATIVE TEST FOR ALCOHOLS

- Qualitative Test for alcohols are some chemical test that are used to identify the presence of alcohol in a particular solution.
- Some of them (Mainly Lucas & Victor Mayer) are also used to differentiate between Primary (10), Secondary (20) and Tertiary Alcohols (30).
- These are 4 most common qualitative test for Alcohols.
- O Sodium Metal Test
- 2 Cerric Ammonium Nitrate Test
- 3 Lucas Test
- 4 Victor Mayer Method.

SODIUM METAL TEST

Alcohols with a small dry piece of sodium metal give effervescence due to liberation of hydrogen gas.

CERRIC AMMONIUM NITRATE TEST

Alcohols with few drops of cernic ammonium nitrate reagent give red colour.

LUCAS TEST

 Lucas test is mainly used to differentiate between Poimary Secondary and Tertiary alcohols.

• In this test alcohols are treated with a solution of HCI and Zinc Chloride to form Alkyl halides

O Primary Alcohols: Primary Alcohols gives no reaction with Lucas reagent at room temperature

Secondary Alcohols: Secondary Alcohols reacts with Lucas Reagent and gives reaction approxiamately in 5 minutes & a cloudiness appears.

Tertiary Alcohol: Tertiary Alcohols reacts with Lucas reagent & gives instant reaction & an immediate cloudiness appears.

$$\begin{array}{c|cccc} CH_3 & & & CH_3 \\ \hline I & & & I \\ CH_3-C & OH & & \hline Reagent & CH_3-C-CI \\ \hline CH_3 & & CH_3 & & CH_3 \end{array}$$

VICTOR MAYER METHOD

- Victor Mayer's test is one of the most commonly used method to differentiate between 1°, 2° & 3° Alcohol.
- The following series of reactions carried out in Victor Mayers Test.
- (i) The alcohol is first treated with iodine in the presence of red phosphorus to obtain Alkyl Iodide.
- (ii) The Alkyl iodide is then treated with silver nitrate to form nitroalkane.
- (iii) The nitroalkane is finally treated with nitrous acid & the resulting solution is made alkaline by adding constic soda.

Primary Alcohol : Gives Red colour

Secondary Alcohol: Gives Blue colour

Tertiary Alcohol: No Colour

Structure & Uses Of following Compounds

1 IODOFORM

Structure

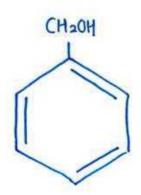
Uses

- Used as disinfectant
- Used for paisoningUsed for removing hair

2 DICHLORO METHANE

structure

Uses


- It is used as a solvent in food technology
- It is used in aerosol formulations.
- It is also used as solvent in manufacturing of pharmaceutical products.
- It is used as degasser
- Used as plastic welding adhesive

3 GLUCEROL Structure

Uses

- · Gilycerol is used to power diesel generators supplying electricity
- It is used sweetening agent.
- Used as solvent
- Used as Humedants
- · Used in soap, hand lotion, toothposte & bakery products.
- · Used for manufacturing of explasives such as dynamite.

(A) BENZUL ALCOHOL Structure

Uses

- Used as antiseptic
- Used to treat asthama & whooping cough
- · Used as local anaesthetics & also as antimicrobial agent.
- · Used as antifungal e antibacterial agent.

Structure

CH3 - CH2 - OH

Uses

- Used as antiseptic
- Used as Industrial Solvent
- Used as preservatives
- Used in thermameters
- · Used 08 freezing agent