

IMPORTANT QUESTIONS

UNIT 4

ALDOL CONDENSATION

- Aldehydes or ketones having at least one a hydrogen undergoes an organic reaction in presence of dilute base (generally diluk NaoH) to form B - hydroxyaldehyde (also known as Aldol)
 the reaction is known as Aldol Reaction.
- Finally after the formation of Aldol by removing a water molecule a new product form known as Enal & the reaction is known as Aldol Condensation.

Mechanism

STEP-I

Hydroxide acts as a base & removes the acidic 9 - hydroger from aldenyde.

$$\begin{array}{c} CH_{2} - C - H \\ I \\ H \\ H \end{array}$$

STEP-I

Nucleophile attacks on aldehyde at electrophilic carbon atom.

STEP - III

Removal of H+ from water to form Aldol

$$CH_{3} - C - CH_{2} - C - H + H^{*}/OH - \rightarrow CH_{3} - C - CH_{2} - C - H$$

$$H$$

$$Aldor$$

FINAL STEP

Removal of water molecule from Aldol compound

$$CH_{s} - CH - CH - C - H \xrightarrow{\Delta} CH_{s} - CH = CH - C - H + H_{20}$$

CROSSED ALDOL CONDENSATION

- When aldol condensation is carried out between two different aldenydes or ketones, then it is known as crassed Aldol Condensation.
- Now if only one species will contain a hydrogen then two products will be formed, while.
- It both the species contain or hydrogen then 4 products will be formed.
- Lets assume we carried out our reaction blw Formaldenycle (Methanal) & Acetaldenycle (ethanal), Now here acetaldenycle contains of hydrogen while formaldenycle don't so we get two products by the following reactions:

Reaction - I

$$CH_{2} - C - H + CH_{3} - C - H \xrightarrow{(1)}{H_{20}} CH_{3} - CH = CH - CHO$$

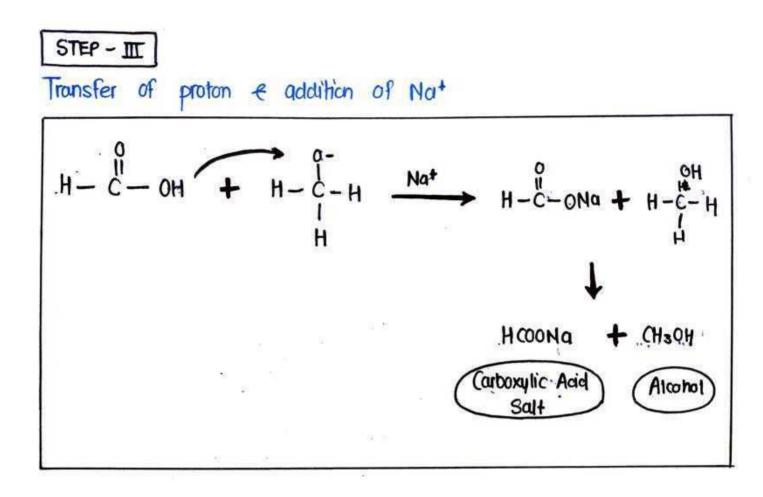
Reaction - II

$$CH_2 - C - H + H - C - H \xrightarrow{(1+)} CH_2 = CH - CHO$$

$$H$$

CANNIZARO REACTION

- Cannizaro reaction is a type of organic reaction in which reaction takes place between those aldehydes that do not contain α - hydrogen
- · Reaction takes place only in the presence of concentrated base.

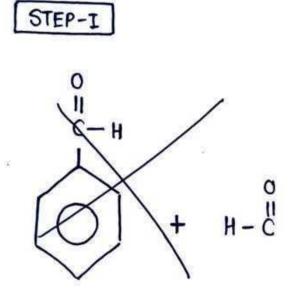

Mechanism

STEP-I

Attack of Hydroxide ion (OH-) on aldehyde. group compound.

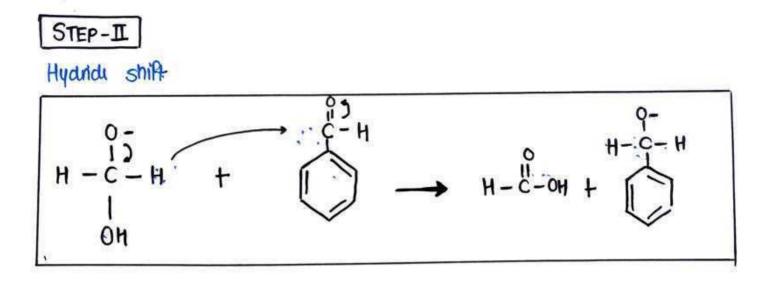
STEP-I

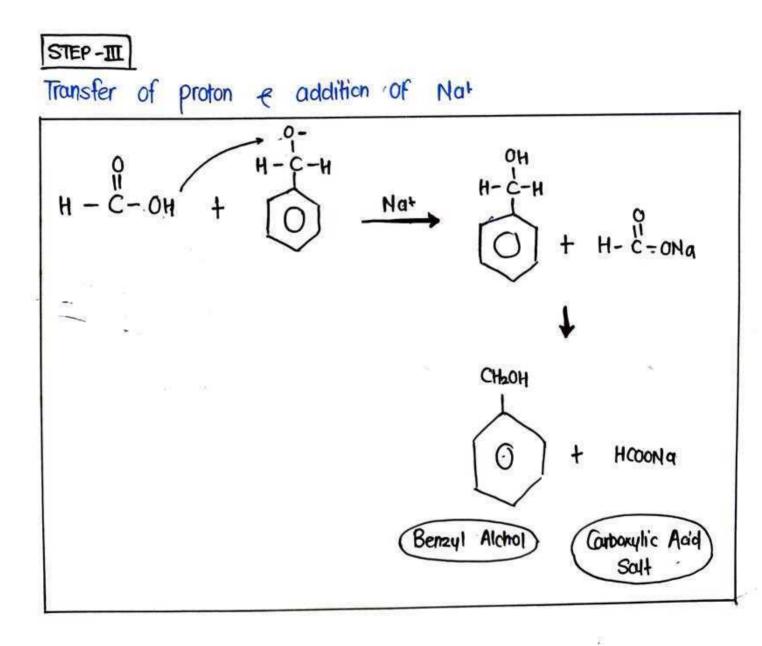
Hydride Shift


.>

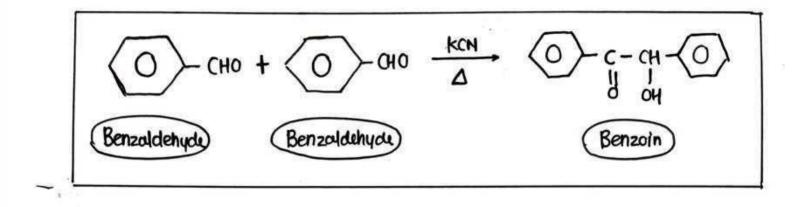
Rx Pharma Education

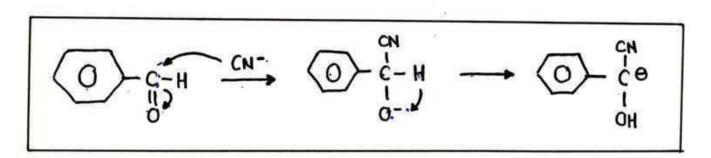
è.


CROSSED CANNIZARD REACTION

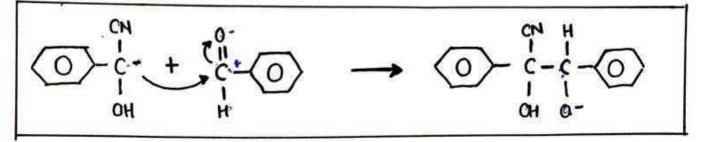

- Crossed cannizaro is also same as cannizaro reaction the main difference is here the reaction takes place blue two different oldehyde group not having a - hydrogen atom.
- · Reaction takes place in the presence of concentrated base.
- The reaction mainly takes place blue formalduhydu & Benzaldehydu

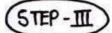
STEP-I Attack of OH- on aldehyde

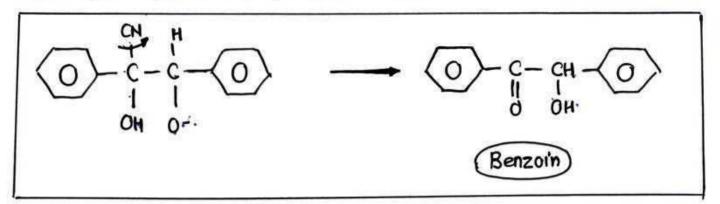

$$H - \dot{C} - \dot{H} + OH - H - \dot{C} - H OH$$


BENZOIN CONDENSATION

In benzoin condensation two moles of aromatic aldehydes (mainly benzaldehydes) reacts with each other in the presence of KCN (potassium cyanide) to form benzoin


STEP-I


Cyanide ion attacks on benzaldehyde to form carbanion



Carbanion attacks on second benzaldehyde to form intermedicult.

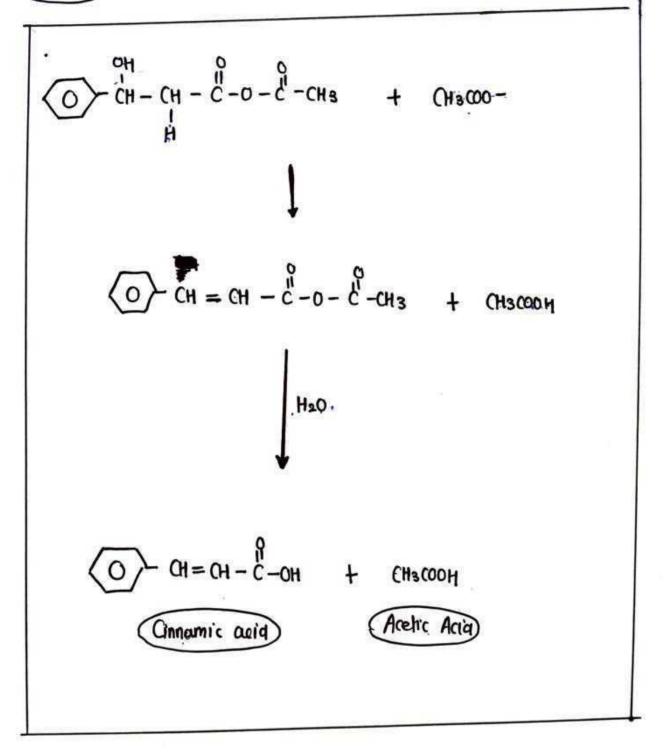
Removal of cyanide ion to form benzoin

PERKIN CONDENSATION

In perkin condensation aromatic aldenyde (mainly benzaldenyde) reacts with acetic anhydride in the presence of carboxylic acid salt to form 02, 8 unsaturated acid & acetic acid.

$$\bigcirc -\overset{\circ}{C} - H + CH_{3} - \overset{\circ}{C} - O - \overset{\circ}{C} - CH_{3} \xrightarrow{CH_{3}COON \alpha} \bigcirc -CH = CH - COOH + CH_{3}COOH$$

Mechanism


STEP-I)

STEP-I

$$\bigcirc - \stackrel{0}{c^{+}} + \stackrel{0}{c_{H_2}} - \stackrel{0}{c_{-}} - \stackrel{0}{c_{+}} - \stackrel{0}{c_{$$

STEP - II

STEP-4

-	Page No.: Date:272
	UNIT- 5 NOTES
	Discuss the acidity of Carboxylic Acid.
	Carboxylic acids are acidic in nature.
•	They dissociate in water according to following equillibrium to give a proton and carboxylate ion
	R- COOH - R-COO- + H+
	Carboxylic Acid Carboxylate Ion Proton
	Cathomytic acide we well ac cathomytake in both are stabilized
	Carboxylic acids as well as carboxylate ion both are stabilized by resonance THE Stabilized
	However, carboxylate ion is more stabilized by resonance.
	because its contributing structures are exactly identical
	On the other hand, the contributing structures of carboxylic
	acid involve charge separation.
	Since carboxylate ion is more stabilized by resonance than
	carboxylic acid, therefore equilibrium lies very much in
	Forward direction .
•	Hence, Carboxylic acids behaves as strong acids
•	Both carboxylic acid and carboxylate ion are resonance
	stabilized but stabilization is far greater for the carboxylate
-	ion than for the acid
•	Thus, carboxylic acids get l'onized due to gain in the stability in going from carboxylic acid to more stable carboxylate
•	tion. Hence greater the stability of carboxylate tion anion, greater its acid strength
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	$RCOOH > HOH > ROH > CH \equiv CH > NH_3 > RH$
	Rx Pharma Education

Page No. _____ Date:_____712

	Effect of Electron Withdrawing Substituents
	The electron withdrawing substituents decrease the electron density on the O-H bond thus facilitating the release OF Ht ions and also stabilize the carboxylate anion by dispersal of negative charge.
•	Electron Withdrawing Group stabilized the carboxylate anion by dispersing the negative charge & therefore increase the acidity.
•	Thus, an electron withdrawing group increases the strength of the acid.
	EFFECT OF ELECTRON RELEASING SUBSTITUENTS
•	The presence of electron releasing substituent intensifies
•	the electron density in 0-4 band. Electron Releasing Group intensify the negative charge on the anion which leads to decrease in the stability of corboxylic acids and a decrease in the acidity of acid.
۲	As a result, it adversely affect the release of H+ ions & hence decreases the acidi'c character,
	Rx Pharma Education